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ABSTRACT 

The paper presents a method for solving the eigenvalue problem Ax = X Bx, where 
A and B are real symmetric but not necessarily positive definite matrices, and B is 
nonsingular. The method reduces the general case into a form C. = Xz where C is a 
pseudosymmetric matrix. A further reduction of C produces a tridiagonal pseudosym- 
metric form to which the iterative HR process is applied. The tridiagonal pseudosym- 
metric form is invariant under the HR transformations. The amount of computation is 
significantly less than in treating the problem by a general method. 

1. INTRODUCTION 

This paper describes some numerical procedures which can be combined 
to form a possible method for solving the eigenvalue problem 

Ax= hBx, 

where A and B are n by n real symmetric 
nonsingular. We shaIl assume B is nonsingular. 

(1) 
matrices and at least one is 
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Before continuing it is necessary to define the term pseudosymmetric 
matrix. 

DEFINITION 1. A matrix G is pseudosymmetric if G = ZZJ where H = Hr 
and J=diag{ 2 1). . 

However, any matrix of the fomr G = .Z,SJ, with S = ST is pseudosymmet- 
ric, as G=.Z,S.Z~l,lA = HI, where H =.JLSl, = HT, ]=]JA, and IL and JR 
are of the same form as the matrix J. 

The method consists of three stages. 

(i) Firstly, the system (1) is reduced to 

(c- hZ)y=O, (24 

where C is a pseudosymmetric matrix. 
(ii) Secondly, the system (2) is reduced to 

(T - XZ)z=O, (2b) 

where T is a tridiagonal pseudosymmetric matrix. 
(iii) Finally, an analogue of the QR algorithm for pseudosymmetric 

matrices is applied to find the eigenvalues of T. This is called the HR 
algorithm. 

It should be noted that each stage accomplishes a specific task, and any 
one or more of the stages might be replaced by an alternative method, or, if 
appropriate, some of the stages might be used as part of some other 
algorithm. For example, stage (ii) could be replaced by an adaptation of the 
Lanczos method as suggested in [3]. Also, stages (ii) and (iii) preserve 
pseudosymmetry. 

2. REDUCTION TO THE FORM (C - XZ)y=O 

We describe three alternative approaches to this stage and discuss the 
associated problems. 

2.1. A Straightforward Reduction 
A straightforward reduction can be achieved by 

(i) decomposing a matrix similar to Z3 to a form LILT: 

P-‘BP = LILT, (3) 
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where P is a product of orthogonal plane rotation matrices and L is a lower 
triangular matrix (Jacobi type plane rotations are introduced to avoid a 
possible breakdown of the process and to improve the numerical stability as 
discussed in [2] and [6]), and then 

(ii) premultiplying (1) by P-i and using (3) to obtain 

P~‘APP~‘x= XLJLTP-‘x, 

which can be arranged to give 

JC’y= My, 

or 

cy= Xly, 

where C’= L-‘P-‘APL-T is symmetric, y= LTP-‘x, and C = _K’. 

The matrix L- ’ is a full lower triangular matrix and is computed ex- 
plicitly. This is the weak point of the process and should if possible be 
avoided. In the next subsection we show how the reduction can be achieved 
in a stable and efficient manner. 

2.2. A Stepwise Reduction 

After each main step T, r = 1,2,. . . , n - 1, the algorithm produces a new 
matrix form B,, where 

B, = (W,D,P,I,,R,)B,-,(W,D,P,z,,R,)T, 

B,=B, 

The form of B,-, is 

r-1 

r-1 

B r-1= n--r+1 

I’ 
_‘___----_-__----- 

I br r br,,+l . . . br,n 
’ b,;, r br+, rt, ... br+l,n 

01,’ ’ 

I in,, . . . b n,” 
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The same transformations are performed simultaneously on the matrix A to 
produce essentially C’ after n - 1 steps. 

Each step r consists of three substeps: 

2.2.1. Two similarity transformations using a Jacobi plane rotation matrix 
R, in the (p, q) plane [8, p. 2661 and an elementary matrix I,, [8, p. 441 are 
chosen so that the elements bji of 

B’_ =Z,,R B _ RTZT 
I 1 r r 1 rrk 

satisfy the condition 

The relation (4) was proved in [6]. For some matrices this transformation 
improves the stability of substep 2.2.3 below, and allows an estimation of 
1) B, 1). When no improvement is expected, this stage can be bypassed. The 
(p, q) plane and index k in I,, are selected so that 

and 

where bii and Gii are the elements in the (i, i) positions of B,_, and 
R, B,_ ,RT, respectively. 

2.2.2. A Householder transformation [8, p. 2901 

B,!‘, = Z’,B,!_,Z’, 

is then applied to reduce Bi_, to the form 

B;‘, = 
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where 

h rr h . . . r,r+1 0 0 

h rt1.r h r+1,r+1 h . . . r+1,r+2 h rfl,n 

H,= o h . . . r+2,r+1 h rt2, r+2 h r+2,11 

b h,,r+l i,rf2 .I. ktl 

As a result of the transformations in substeps 2.2.1 and 2.2.2 we have 

103 

where bl, =m~,,i,iSn(lb~i[). 

2.2.3. Finally the transformation 

B, = W, D, B,? 1 D,WrT 

reduces B,C, to the form 

r 

B,= n--r 

I;_____ 
1 K,l,r+l 
’ hr+2 r-cl 

0’ ’ 
I : 

) i n,r+l 

n-r 

0 ____---- 
h . . . r+1,r+2 

h r+z.r+2 -.. 

h n,r+2 *-- 

_--- 
h r+1,n 

h rf2,n . 

h”,n _ 

The elements dii and wii of matrices D, and W, which produce this reduction 
are 

di, =l for ifr, 

4,=1//j%% 

dii =0 for i # j, 
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and 
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wii = 1, 

wii =o for i #j, 

except w,+,, r7 which is defined by 

W r+1,r = ‘L, r , /KL 

The minus sign in the definition of wr+r, r is used when h,, >O and therefore 
jr, = 1, while the plus sign is used when h,, (0 and therefore i,, = - 1. 

From (5) 

Considering the properties of the transformations used in substeps 2.2.1 to 
2.2.3, the following relations are obtained: 

and 

This indicates the important role of the values h,, and h,, I, r in the stability of 
the reduction process. 

Let us now consider the effect of the simultaneous transformation of A to 
C’. The transformations using the matrices R,, Irk, and Z’, in substeps 2.2.1 
and 2.2.2 are stable. Also after all n - 1 transformations in substep 2.2.3, each 
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individual element a ,s will be altered at most twice by the transformations 
using the D, matrices and at most twice by the transformations using the W, 
matrices. As a result these steps produce an estimated amplification factor for 
a typical element urs of 

where b$ is the value of bh at the Zth step. This amplification factor is 
unlikely to be attained in practice. 

The number of operations involved in the computation of J is approxi- 
mately $n” additions (comparisons), jn” multiplications, and 4n square roots, 
while the computation of the elements of C’ involves approximately n3 
additions and n3 multiplications. The distribution of the approximate number 
of operations is presented in the following table for the transformation of A to 
C’, and the reduction of B to _l, where full advantage has been taken of 
symmetry: 

A to C’ B toJ 

Substep + * SQRT + * SQRT 

2.2.1 2n2 4n2 0 $n” 2n2 2n-2 

2.2.2 in” jn3 n-2 

2.2.3 n 2n n-l 

2.3. Reduction by Orthogonul Transform&ions and a Diagonal 
Transformation 

The third possible approach is reduction by orthogonal transformations 
and a diagonal transformation. In this case B is reduced firstly to a symmetric 
tridiagonal form H by Householder transformations [8, p. 2901. Then H is 
reduced to diag{ j?,} by the QR iterative process [8, p. 5151 to give 

where 

QBQ’=diag{Pi}=Jdiag{lPi(}, 

Q-‘=QT 

and pi are the eigenvalues of B. Correspondingly A is transformed to 

C” = QAQ’. 
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Finally 

Stability is assured throughout the process, while the number of operations 
required is generally much larger than in the method described in Section 2.2. 
Assuming that there are 2n iteration steps in the QR process and that 
deflation of the matrix is used, the following gives an estimate of the number 
of operations: 

+ * SQRT 

3n3 4n3 2n2 

A possible danger is in the final multiplications by diag{ l/l /$ ( ‘j2}, but here 
at least the potential danger is obvious. 

3. TRANSFORMATION TO (T - XZ)z =0 

The problem of finding the eigenvalues of a pseudosymmetric matrix can 
be successfully solved by means of the well-known algorithms for general 
unsymmetric matrices [8, Chapter 8; 51. These algorithms do not preserve 
pseudosymmetry, and require more arithmetic operations than methods which 
do, particularly in the later iterative steps. 

The transformation to a tridiagonal pseudosymmetric matrix can be 
performed by an analogue of either Givens’s or Householder’s method. 

3.1. Pseudosymmetric Givens Method 
An analogue of Givens’s method [8, p. 2821 which preserves pseudosym- 

metry is now described. The form of the individual transformations is 

where Q]Q’ produces J or J permuted, and Q-‘C’Q-’ is obviously symmet- 
ric. 

The transformation of C to T consists of n -2 general steps. In the rth 

step (r=1,2,..., n - 2) the elements in positions (i, r) and (r, i), for r + 2 G i 
< n, of the intermediate matrix, say C,., i, are reduced to zero by means of the 
similarity transformation 

where Qr+ 1, i P reduces a similarity transformation in the (r + 1, i) plane. 
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We shall now describe Q+ i, i and Qr>‘i, i in detail. The elements of Qr+ i, i 
and its inverse in the positions (T + 1, r + l), (r + 1, i), (i, r + l), and (i, i) are 
functions of elements of C,, i. All other diagonal elements of the two matrices 
are equal to 1, and all other off-diagonal elements are equal to 0. 

Denote the elements of C,,i, Q,+l,i, and Qr;‘,,i by cst, qSl, and qS;’ 
respectively. Assume further that cr+ i T , #O and ci, r #O. The case when this is 
not true is also explained below as a special case. Then the following two 
possibilities can occur: 

(i) sign(c,+,,,.Ci,,)=sign(C,,,+,.c,,i). For this case 

9 *+I, i =9i,r+l=ci,r/(c~++1.,+c~~)‘/2~ 

and 

(ii) sign(c,+,,;ci ,)= -sign(c, ,+i.c, i). For this case we have 

(a) If ICr+~,,l>lCi,rll t.h ’ ’ 

-1 
9r+l,r+1=9i,i=9r+l,r+l = 9,; = Cr+l,r 

kc+1,, - ciY2 ’ 

(b) If Icr+l,r I<lci,,(, then 

- - -1 
9r+l,r+l-9i,i--94r+l,r+l = - 92 = (,& ~;;:.,,1,2 2 

9 r+~,i=9i,r+l=9~-:1,i=9i~~+l=- 
(c& -:;;ly * 

Three special cases can occur in the similarity transformation: 

(1) When ci r = 0. If this happens then no similarity transformation is 
necessary for this i. 
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(2) When cr+l, r = 0 and ci, r # 0. In this case rows and columns r + 1 
and i have to be exchanged. No other similarity transformation is necessary 
for this i. 

(3) In caSe (ii) when c,+~,, =ci,#O. Inthiscaseanindexs,i~s~n, , 
has to be found for which 

C r+l,r f cs,,. 

Then the rows and columns i and s have to be exchanged and the similarity 
transformation performed. But if i = n this transformation fails to work. 
However, there is only a small possibility that case (3) will occur in practice. 
If it does occur, then some rows and columns of C must be exchanged by 
means of similarity transformations and the whole process repeated. 

3.2. Pseudosymmetric Householder Method 

An alternative is to use an analogue of Householder’s method for pseudo 
symmetric matrices. 

The process consists of n - 2 general steps T, r = 1,2,. . . , n - 2. In each 
step the similarity transformation is performed, giving 

= P$z7P, = P JC’P , T r Yl (6) 

where C, = C, C,_, = T, C,’ is symmetric, and ], belongs to the class of J 
matrices. The elements of the column vector v,. of length n are 

v!‘) =o t for l<iGr, 

and 

where j,‘l) are the elements of Z,, c/l) are the elements of C,, and 

sr = i!;‘,, rfl 
i 

i j~;),c~~;,~}l’z. 
i=r+1 

(71 
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It should be noted that oT.QJ~ = 1 [ 11. It was proved in [l] that the transforma- 
tion (6): (i) preserves a pseudosymmetric matrix form, (ii) is a similarity 
transformation, and (iii) reduces to zero the elements of C, in the positions 
(r +2, r),(r +3, r) ,..., (~z,T) and (r,r+2),(r,r+3) ,..., (r,n). The transfor- 
mation preserves all the zeros obtained in previous steps. 

The value of &)i can be imaginary, but in practice essentially only the 
value of [vi;‘i12 is required when computing the elements of P,. 

The definition (7) of S, can also admit an imaginary value. In order to 
avoid complex arithmetic the transformation matrices must be modified when 
S,” is negative. The sign of ST2 can be changed by swapping rows and columns 
r + 1 and t, where il;‘,,,+, = - ijf’ and T +2< t < n. 

LEMMA. Zf S,? ~0, there exists a t such that ily,, ,+ 1 = - ill’ and r i-2< t 
G 12. 

Proof. Let S,? (0. Then ii:), i = r + 1,. . . , n, can be neither all negative 
nor all positive. Hence there exists a t such that jl:‘,. r+ 1 = - ii:’ and r + 2G t 

G n. 

The similarity permutation of rows and columns r + 1 and t swaps i!;‘,, r+ 1 
and cji)i r with ij;’ and cjrr), for 

The value of the sum in S2 is not changed by the similarity permutation, but 
the sign of the new j!:‘,,,,, changes. Hence the sign of S,? changes from 
negative to positive. 

Possibly some other method could be used instead of the pseudosymmet- 
ric Givens or Householder method. The reduction of a general matrix to a 
tridiagonal form is analyzed in detail in [8, Chapter 51. It is shown that the 
process can break down at some stage. When this occurs the process must be 
repeated from the beginning with a transformed starting matrix. 

Clearly a potential source of numerical breakdown or severe cancellation 
errors occurs for the case where S,? is zero or very small. If S,” is not small, the 
grouping of positive and negative terms removes the danger of cancellation 
errors. The calculation of S,’ should always use double precision accumulation. 
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4. REDUCTION TO (S - XZ)v =0 BY THE ITERATIVE ZZR PROCESS. 

The system (2b) is reduced to 

Sv=Av, (8) 

where for a matrix T with k, O< k d n/2, pairs of complex conjugate 
eigenvalues A, 2 ipcl,, T = 1,2,.. . ,k, and real eigenvalues Ask+i,.. .,A,. Here S 
is of the form 

Xl 
x2 0 

PSPT = 
*, 

0 A 2ki- 1 

An_ 

where X, is a 2 X2 matrix on the diagonal of PSPT having the eigenvalues 
A, 5 ip, [8, p. 4861. P is the product of matrices I,,, l<i, i”n, where a 
similarity transformation with the Iif interchanges rows i and i and columns i 

and i [8, p. 441. The eigenvalues of S which are also the computed eigenvalues 
of (1) can be extracted from S directly. 

The HR process is very similar to the QR process, which is described in 
detail in [8], the H standing for potentially hyperbolic transformations. Shifts 
of origin are introduced to increase the rate of convergence. In fact these 
shifts are essential to insure the HR decomposition is constructable, as 
remarked in [3]. Shifts are obtained from the two roots of the bottom 
right-hand comer 2 X 2 submatrix of the matrix on which the HR transforma- 
tion is performed. The convergence of the HR process is discussed in [3], and 
the suitability for numerical algorithms of the decomposition used is justified 
in Elsner [4]. 

For the case when T has real eigenvalues the single step HR process can 
be applied with the shifts being real numbers. All calculations can be 
performed with real numbers, providing that T is real. For T having some 
complex conjugate pairs of eigenvalues the shifts may be complex numbers as 
well. In order to avoid complex arithmetic the double step HR process must 
be applied in this case. Both types of HR process preserve the pseudosymmet- 
ric tridiagonal matrix form. 

We now give a short description of each of the two HR processes 
mentioned above. Those details which make HR different from QR will be 
pointed out precisely. 



EIGENVALUES OF A - hB FOR A AND B SYMMETRIC 

4.1. Tke Single Step HR Process 
The process is defined by 

111 

giving 

T s+l = H,-‘T,H s for s=1,2,3 ,..., 

where T, = T, R, is an upper triangular matrix, H,’ = Hi ‘,_, . . . H,iH,i 
with Hr+‘, , 

1 , 
, as described later, and k, is the shift of origin. In the computer 

algorithm starting with T,’ = T a sequence of matrices T,‘, instead of T,, is 
computed as follows: 

Firstly T,‘- k,Z is premultiplied by Hi,‘,_,. . . H,iHc:, giving R,s, where 
k,9 is the shift of origin computed from T,‘. Secondly’ R, is postmultiplied by 

H, iHsz.*.Hn n-1’ 
T” 

giving T,‘,,. A total shift k, = Zk, is accumulated. When 
s+l is of the form of the matrix S of (8) to working accuracy, the total shift k, 

is added to the diagonal elements of Ts’+ 1, giving Ts+ I. 
H-1 r+l t is defined so that: 

(I) Premultiplication of H<i_l. . Hi:(T,'- k,l )-which is, for example 
for n = 5, i =3, of the form 

x x x 9 0 
0 x X x 0 1 

HiiH2,:(T,‘-R,Z)= 0 0 Xi,, r 0 

I 

0 0 Xi+l,i x x 

0 0 0 x x I 

(9) 

-by HI,‘, i reduces to zero the element in the position (i + 1, i). 
(II) H,F”‘( T,’ - k,Z) is upper triangular. 

(III) T,;, is a tridiagonal pseudosymmetric matrix. 

For the case when H,<ll I , is a rotation in the plane (i, i + l), conditions (I) 
and (II) are fulfilled. 

To fulfill (III) the sign patterns of the off diagonal elements tii of T,’ have 
to be taken into account when defining H,-,‘,, i. Suppose that 

sign(i)=sign(ti+i,it,,i+i) for i=1,2 ,..., n-l, 

and suppose that in the formulae defining cases (i) and (ii) of Section 3.1 the 
element cr+i r has been replaced by ~,+i, r+l and the element c,, r has been 
replaced by ii,,+i of (9). Then for sign(i) positive, H,-,‘, i is of Givens’s form, 



112 M. A. BREBNER AND J. GRAD 

i.e. H,:+lr,i =Qi,i+l, where Q,, i + 1 is defined by (i) in Section 3.1. For sign(i) 
negative, then HT+‘r, i = Qi , i + 1, where Qi, i+ 1 and its inverse are defined by (ii) 
in Section 3.1. In case (b), when (x~,~ (<Ix~+~,~ I, the sign patterns will be 
modified in the matrix 

[H&. . . H~~Hz,:(‘4-‘,‘)H2,1H3,~...Hi,i--l]Hi+l,i’ 

and the computations must take account of these sign changes when de- 
termining the type of the matrix HT_+12,i+l. The computer algorithm must 
therefore modify the sign pattern indicators as follows. 

sign(i+l)=-sign(i+l), 

sign(i-l)= -sign(i-1), (10) 

before H,:‘,, i + 1 is determined. It should again be noted that the numerical 
values of the elements of Hy+12, i + I are determined from the matrix 

HY’ 
r+l,i . . . H;;(T,‘- k,Z). 

If the sign indicators are modified as in (10) in step s of the HR process, 
then they can be used as a starting set of indicators for step s + 1 of HR. 

The single step HR process was applied to a set of pseudosymmetric 
tridiagonal matrices with real eigenvalues, and in each case the sequence of 
matrices T,’ rapidly tended to a diagonal form. 

4.2. The Double Step HR Process 
The process is defined by 

T, - k,Z = H,R,, R,H, + k,Z = Ts+l, 

T r+l-kzZ=Hs+,Rs+,~ Rs+$s+,+kzZ=T,+,, 

giving 

(H,H,+,)(R,+,R,)=(T,-k,Z)(T,--k,Z) 

and 

T ,+z=(H,H,+,)-‘Ts(H,Hs+,) (11) 
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for s = 1,3,5,. . . , where k, and k, are either two real or a pair of complex 
conjugate eigenvalues for the bottom right-hand comer 2 X 2 submatrix of I’,; 

R, and Rssl are upper triangular matrices; and the matrix (H,H,+i)-’ is 
defined so that 

(H~~,~+,)~‘[(T,-k,Z)(T,-k,Z)]=R,~+,R, (12) 

where R,9+IR, is an upper triangular matrix. 
Following [8], we can see that ( HSH,+ i )) ‘, which satisfies (12) and 

performs (ll), can be obtained in practice as a product of elementary 
matrices QT. ; of type (i) and (ii) respectively defined in Section 3.1. In fact we 
have 

(4~,+,)-'=(Q~,~Q~,~Q~,~Q~,~.~.Qn--l,nQn~,,n+~Qn,n+~)-1 

=(P&. . ?_$y, 

where 

P,=Qi i+lQi,i+2 for i=2,3,...,n-1 and P,,=Q,, n+l. 

Essentially as in [8], we find 

where 

and 

q’ Z’ 0 . . 

- 

T 

0 x ... 0 0 
---- ----- 

T’ 
s+2 

Iz ;; 

. I T 
: SC2 

I 

-0 I 

0 
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The elements X, y, z are computed as in QR from the elements of T,: 

x = t;1+ t,,t,, - hl(kl+ u-t klk2, 

Y = t2dt,, + t22 - k, i k2L 

In addition, for HR two more elements y’ and z’ must be computed from 

y’= f,,h, + t22 - k, - k2)9 

where (y’(=JyI and Jz’I = 1~1. The parentheses in (13) show the order in 
which the similarity transformations by Pie’ and Pi are performed. 

Let 

T,‘, i = Pi- l T,‘, i _ IPi 04 

for i =2 3 > ,*.., n, where T,’ I = T,’ and Ts’, n = Ts’+,. In the similarity transfor- 
mation (14) first the p&multiplication of Ts’, i--l by Pi-’ is performed, 
followed by the postmultplication of P,- ‘Ts’, i_ 1 by Pi. The matrix Pi- ’ = 
Q,Ii+2Q,r:+1 is defined so that premultiplication of Ts’, i_-l by Q,T:+i reduces 
to zero the element in the position (i + 1, i - 1) of Q,T;+,Ti, i_-l, and premulti- 
plication of Q,;,!+ 1Ti, i_ 1 by Q,;:+, reduces to zero the element in the position 
(i+2,i-1) of Pr’Ti,,_,. 

In order to preserve the pseudosymmetric tridiagonal form of TS+2, the 
sign patterns of the elements of Ts’, i_-l must be considered when defining 

OF,: 1 and Q1y/+2. Suppose that the (i, i) element of Ts’, i_-l is ti:, that in the 
formulae for (i) and (ii) in Section 3.1 the elements cii have been replaced by 
tii, and that 

sign(k)=sign(t(,i_,t~_l,it;,i-,t~_,,k) for k=i+l,i+2. 

Then for sign(k) positive Q,r: = Qi, k, 
3.1. For sign(k) negative Q,<i = Qi, k, 

where Qi,k is defined by (i) in Section 
where Qi, k is defined by (ii) in Section 

3.1. In case (b) for k=i+l, when It;i_rl<lt/+,,i_,J, the sign pattern 
indicator sign( i + 2) must be modified as follows: 

sign(i +2)= -sign(i +2) 

before Q,::+, is determined. 
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The numerical values of the elements of Q,;,!,, are determined from 
Ts’, , _ Ir while the numerical values of the elements of Q,T:+, are determined 
from Q,ri:,7",i-1. 

For the purpose of programming it is necessary to know the form of 
matrices T,’ i. We present two examples for n =8 and i =2,3, where we have 
marked by 'X those elements which are in general different from zero. They 
are 

T,‘2 = 

O’X 0 0 0 0 0 0 -+_____---_----- 
x,xxxxooo 
01x x x 0 0 0 0 
O’X xx x 0 0 0 
o’xoxxxoo o~oooxxxo 
olooooxxx 

-010 0 0 0 0 x x 

0 X’O 0 0 0 0 0 
xx’xooooo 

_l____________ 

o-xl x x x x 0 0 
Tst3= 0 0’ x x x 0 0 0 

oo’xxxxoo 
. 

oo~xoxxxo 
ooloooxxx 

,o 01 0 0 0 0 x x_ 

The double step HR process was applied to a set of pseudosymmetric 
tridiagonal matrices with real and complex conjugate eigenvalues, and in each 
case the sequence of matrices T, rapidly tended to the form of the matrix S in 
(8). It should be noted that the double step process also converged rapidly for 
the set of matrices with only real eigenvalues used to test the convergence of 
the single step process. 

5. EXAMPLES 

To test the method described in the previous sections a program has been 
written in FORTRAN and applied to some examples of form (1). The program is 
subdivided into three subroutines. Each subroutine solves an independent 
stage of the general problem: 

Subroutine (i) transforms the system Ax = hBx by the method described 
in Section 2.2 into the form Cy = Ay, where C is in general a full pseudosym- 
metric matrix. 
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S&routine (ii) transforms C into a pseudosymmetric tridiagonal form T, 
by the method described in Section 3.2. 

Subroutine (iii) finds the eigenvalues of T by the double step HR method. 

Firstly the subroutines were tested on a CDC 6400 (60 bit word) using 
double precision floating point arithmetic in subroutines (i) and (ii) and single 
precision in subroutine (iii). For examples 1 and 2 given below the results 
matched those computed by using the program EIGENP [5] on B-‘Ax= hx to 
12 decimal digits, and with those reported in [7] to 11 decimal digits. Several 
other tests on the CDC with n =5 and 6 produce comparable accuracy. The 
number of iterations required ranged from 5 to 9. 

EXAMPLE 1. For 

I -1 -3 
-3 -4 

A= 1; -3.1 
-3.1 

B= 

-3 -3.1 
.-3 -3.1 

-1 -1 
-1 0 
-1 0 
-1 0 
-1 0 
-1 0 

- 

-3 -3 
-3.1 -3.1 

2.8 3.8 
3.8 9.8 
3.8 10.7 
3.8 10.7 

1 -1 -1 
0 0 0 
1 1 1 
1 2 2 
1 2 3 
1 2 3 

-3 -3 
-3.1 -3.1 

3.8 3.8 
10.7 10.7 ’ 
12.6 14.6 
14.6 15.6 _ 

-1 

0 
1 

2 
3 
2 

the computed eigenvalues Xi = .$, + in, are given by 

i Ei qi 

1 4.1824591916531 0 
2 6.13692 60508 851 0 
3,4 0.90877 04041729 t 1.93967 68010 22 
56 0.93153 69745 565 I 1.97197 66256 20 - 

EXAMPLE 2. For 
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the computed eigenvalues hi, which are all real, are 

0.4327872110 1_7 
0.66366 27483 92 
0.94385 90046 6s 
1.10928454001~ 
1.49235 32325 43 

Later a larger set of eighty 10 X 10, 14X 14, and 19 X 19 problems were 
tested on a Honeywell level 2 DPS 68 processor (36 bit word) using double 
precision floating point arithmetic in subroutines (i), (ii), and (iii). Several of 
these matrices possessed 3 or more multiple roots, and the multiplicity of the 
roots ranged from 2 to 5. The computed eigenvalues were correct to at least 
11 decimal digits, and in many cases the precision was 14 or more decimal 
digits. In two cases a pivoting strategy was essential in stage (i) for the 
computation of accurate results. Generally less than 1.3n iterations were 
required in stage (iii). 

6. REMARKS 

Although the authors have successfully applied the methods described in 
this paper to many problems, the reader is warned that the process can be 
unstable or break down for some problems, particularly during the reduction 
of C to a tridiagonal form. However, the single and double step HR processes 
never broke down and converged rapidly to the correct eigenvalues for a large 
set of test problems. 

The authors wish to express their gratitude to Dr. J. H. Wilkinson (NPL) 
and E. Zakrajsek (University of Ljubliana) for their very helpful comments 
and suggestions, and to J. Vrecko (University of Liubliana) and W. Wiggins 

(University of Calgary) for help with some of the programming. They would 

also like to thank the referee for constructive comments. 
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